z-logo
open-access-imgOpen Access
Magetostriction, spin reorientation and M?ssbauer effect studies of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys
Author(s) -
Zheng Xiaoping,
Peifeng Zhang,
Fan Duo-Wang,
Fashen Li,
Hao Yuan
Publication year - 2007
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.56.535
Subject(s) - magnetostriction , magnetocrystalline anisotropy , materials science , condensed matter physics , laves phase , anisotropy , lattice constant , magnetization , mössbauer spectroscopy , magnetic anisotropy , crystallography , magnetic field , intermetallic , metallurgy , chemistry , physics , alloy , quantum mechanics , diffraction , optics
The effect of Pr substitution for Dy on the structure, magnetostriction, anisotropy and spin reorientation of a series of Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys (x=0, 0.1, 0.20, 0.25, 0.30, 0.35) at room temperature has been investigated. It was found that the Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 substantially retained the MgCu2-type C-15 cubic Laves phase structure for compositions with x≤0.1 and the lattice constant increases slowly with increasing x. The magnetostriction of the Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95 alloys decreases drastically with increasing x and the magnetostrictive effect disappears for x>0.2. However, the magnetostriction shows a slightly bigger value at x=0.1 than the free alloys and is saturated more easily with the magnetic field H, showing that a small amount of Pr substitution is beneficial to the decrease in the magnetocrystalline anisotropy. The spontaneous magnetostriction λ111 increases linearly with incresasing x whereas the spin reorientation temperature increases first and then decreases rapidly. The analysis of the Mssbauer spectra indicated that the easy magnetization direction in the {110} plane deviates slightly from the main axis of symmetry with the increase in Pr concentration x namely the spin reorientation. Compared with the Al substitutionthe effect of Pr substitution for Dy on the spin reorientation is smaller.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here