
Stimulated trapped electron-acoustic wave scattering and ion-vortices in subcritical plasmas
Author(s) -
Baiwen Li,
Tian En-Ke
Publication year - 2007
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.56.4749
Subject(s) - physics , atomic physics , ion acoustic wave , vortex , ion , plasma , electron , instability , soliton , electromagnetic radiation , optics , nonlinear system , quantum mechanics , mechanics
Stimulated trapped electron-acoustic wave scattering instability by a linearly-polarized laser interacting with a plasma layer at a subcritical density range is studied by particle simulation. Its early behavior is almost the same whether ion dynamics is taken into account or not. However, when ion dynamics is considered, a large ion acoustic wave is excited, which grows with time and eventually breaks up locally, followed by the generation of a large amplitude electromagnetic soliton. As a new phenomenon, an ion-vortex structure in ion phase-space is formed due to the ion acceleration and trapping by high local electromagnetic and electrostatic fields inside the soliton. As the electromagnetic soliton is accelerated backwards, several ion-vortices are formed in the wake behind. Ion-vortices are also found in inhomogeneous subcritical plasmas. These ion-vortices are recognized as the Kelvin-Helmholtz instability patterns, likely to be formed due to a topological defect, i.e., the plasma density cavity in the electromagnetic soliton region, which exhibit the well-known paradigmatic Ying-Yang pattern.