z-logo
open-access-imgOpen Access
Stimulated trapped electron-acoustic wave scattering and ion-vortices in subcritical plasmas
Author(s) -
Baiwen Li,
Tian En-Ke
Publication year - 2007
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.56.4749
Subject(s) - physics , atomic physics , ion acoustic wave , vortex , ion , plasma , electron , instability , soliton , electromagnetic radiation , optics , nonlinear system , quantum mechanics , mechanics
Stimulated trapped electron-acoustic wave scattering instability by a linearly-polarized laser interacting with a plasma layer at a subcritical density range is studied by particle simulation. Its early behavior is almost the same whether ion dynamics is taken into account or not. However, when ion dynamics is considered, a large ion acoustic wave is excited, which grows with time and eventually breaks up locally, followed by the generation of a large amplitude electromagnetic soliton. As a new phenomenon, an ion-vortex structure in ion phase-space is formed due to the ion acceleration and trapping by high local electromagnetic and electrostatic fields inside the soliton. As the electromagnetic soliton is accelerated backwards, several ion-vortices are formed in the wake behind. Ion-vortices are also found in inhomogeneous subcritical plasmas. These ion-vortices are recognized as the Kelvin-Helmholtz instability patterns, likely to be formed due to a topological defect, i.e., the plasma density cavity in the electromagnetic soliton region, which exhibit the well-known paradigmatic Ying-Yang pattern.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom