z-logo
open-access-imgOpen Access
Equivalent parallel RLC model in the mesoscopic structure of nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloy
Author(s) -
Yang Quan-min,
Xu Qi-Ming,
Yunzhang Fang,
Lingling Wang,
Shi Fang-Ye
Publication year - 2007
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.56.3366
Subject(s) - nanocrystalline material , mesoscopic physics , materials science , alloy , rlc circuit , composite material , condensed matter physics , nanotechnology , physics , voltage , quantum mechanics , capacitor
Based on the AFM observation of the mesoscopic structure and the XRD experimental results of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy, we proposed a model for exploring the influence of the mesoscopic structure on the soft magntic properties of this kind of Fe-based nanocrystalline alloys, and calculate the frequency function——D-function for the soft magntic properties of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy. With the frequency function, we succeeded in exploring the influence of the frequency on the soft magntic properties of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy. Analysis shows that the D-function is a complex function, the real part Re(D) shows the inductance and capacitance of nanocrystalline Fe73.5Cu1Nb3Si13.5B9, the imaginary part Im(D) shows its resistance. We have built an equivalent parallel RLC model for the mesoscopic structure of Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy. Based on the model we have calculated vextGMI=v|Re(D)=0, which is the condition of maximum GMI value for Fe73.5Cu1Nb3Si13.5B9 nanocrystalline alloy, as well as influence of the factors μ,σ,ω,R,Hex and the micro-magntic-structure on the maximum GMI value.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here