z-logo
open-access-imgOpen Access
Three-dimensional surface contouring of reflecting micro-object by digital holography with short-coherence light source
Author(s) -
Caojin Yuan,
Hongchen Zhai,
Wang Xiao-Lei,
Wu Lan
Publication year - 2007
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.56.218
Subject(s) - contouring , optics , holography , computer science , speckle noise , speckle pattern , digital holography , coherence (philosophical gambling strategy) , computer vision , artificial intelligence , physics , computer graphics (images) , quantum mechanics
In this paper, a new lensless digital holography system with short-coherent light source is designed for recording three-dimensional surface contour of reflecting micro-object. In the experiment, the different layers on the inner wall of a conical pore are recorded by changing the path length of object beams to record a series of sub-holograms for three-dimensional reconstruction. This makes the recording system compact and reduces the additional error in the recording. The measured longitudinal error is about 3.5%with a lateral error of about 2.6%. Besides, the least squares polynomial fit method is used for the first time to carry out three-dimensional reconstruction with a series of two dimensional intensity images of a micro-object, which not only reduces obviously the complication of the three-dimensional reconstruction, but also can be used to carry out three-dimensional reconstruction of a micro-object with strong laser speckle noise, of which the phase images can not be obtained from the phase-unwrapping process.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom