
Theoretical calculation of the differential cross section for He-NO collision system
Author(s) -
Wang Rong-Kai,
Linghu Rong-Feng,
Xinling Yang
Publication year - 2007
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.56.2067
Subject(s) - collision , cross section (physics) , scattering cross section , section (typography) , differential (mechanical device) , physics , nuclear physics , atomic physics , computer science , thermodynamics , optics , operating system , quantum mechanics , scattering , computer security
An anisotropic intermolecular potential of the He-NO complex has been obtained by utilizing the Huxley analytic function to fit the intermolecular energy data, which have been calculated at the theoretical level of the RCCSD(T)/aug-cc-pVTZ+bf. Then the total differential cross section, elastic differential cross section and inelastic differential cross section for collision between He atom and NO molecule have been calculated using close-coupling approximation. Finally, the law governing the change of the differential scattering cross section has been given. This study shows that the fitted anisotropic intermolecular potential not only possesses the advantage of a simpler function form but also offers a better description of the characteristic of interaction in He-NO system. At the same time, the difficult problem of determining the intermolecular potential parameters can be solved on the basis of the results of ab initio calculation for the collision systems. Therefore, the result obtained may be helpful for probing collision mechanism between atoms and molecules.