z-logo
open-access-imgOpen Access
Analytical thermal model and characterization of lateral thermal effects in AlInGaAs vertical-cavity top-emitting lasers
Author(s) -
Jian Wu
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.5848
Subject(s) - materials science , thermal , laser , optoelectronics , semiconductor laser theory , optics , work (physics) , mechanics , thermodynamics , diode , physics
An optimized comprehensively analytical thermal model was developed in accordance with interior heating characteristics of a gain-guided, top-emitting vertical-cavity surface-emitting laser with c.w. operation under room temperatures. Lateral thermal effects in AlInGaAs/AlGaAs vertical-cavity surface-emitting lasers were calculated analytically in detail. The comprehensively analytical solutions exhibited a clearer physical picture of the lateral heat-flux diffusion. The theoretical predicts of the interior thermal variation within the device were consistent with the experimental results as well. The work provides a useful tool for investigation of thermodynamic properties of the vertical-cavity surface-emitting lasers under thermal steady state, optimization of the device structure and control of the threshold current and power saturation effect, especially for the lateral thermal crosstalk in 2-dimensional arrays.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom