Quantum constraint dynamics and tracking control of a thermal dissipative qubit
Author(s) -
Jing-Min Zhu,
Shun-Jin Wang
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.5018
Subject(s) - dissipative system , qubit , phase qubit , physics , constraint (computer aided design) , coherence (philosophical gambling strategy) , quantum , charge qubit , thermal reservoir , classical mechanics , quantum mechanics , mathematics , geometry , heat transfer , heat spreader
Quantum constraint dynamics and tracking control strategy to stabilize the coherence of a decoherent system is applied to a dissipative qubit system at a finite temperature. By using a control field dependent on the dynamical state of the qubit through the constraint equations, we show that the quantum state of the qubit can be preserved within a finite time duration by the feedback effect of the qubit system. It is also shown that the temperature plays a negative role in the control strategy.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom