z-logo
open-access-imgOpen Access
A semiconductor nanocrystal PbSe quantum dot fiber amplifier
Author(s) -
Cheng Cheng,
Zhang Hang
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.4139
Subject(s) - quantum dot , materials science , optoelectronics , nanocrystal , optical amplifier , rate equation , bandwidth (computing) , amplifier , fiber amplifier , physics , optics , telecommunications , quantum mechanics , nanotechnology , computer science , laser , cmos , kinetics
A novel kind of fiber amplifier——quantum dot doped fiber amplifier (QDFA) is presented. Using semiconductor nanocrystal PbSe as a dopant, the gain bandwidths of the PbSe-QDFA are simulated by solving the rate equation and the light propagation equation in a two-level system, applying a genetic algorithm combined with an “inversing method”. Comparing with conventional erbium-doped fiber amplifiers available, there is evidence to show that characteristics of the PbSe-QDFA are obviously advantageous in respect of bandwidth and noise, especially on long-waelength band. Furthermore, the ideal emission-absorption cross-sections of the quantum dot are determined by utilizing the genetic algorithm. Under such ideal cross-sections, the QDFA possesses with the performance of ultra-bandwidth and low noise figure near a quantum limit.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom