
General theory of nonlinear beam-wave interaction in traveling-wave tubes
Author(s) -
Jianqing Li,
Yuanlong Mo
Publication year - 2006
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.4117
Subject(s) - nonlinear system , traveling wave tube , beam (structure) , traveling wave , physics , mechanics , classical mechanics , optics , quantum mechanics , mathematical analysis , mathematics , amplifier , optoelectronics , cmos
Using the theory of waveguide excited, the full three-dimensional self-consistent working equations of interaction between slow electromagnetic traveling wave and electronic beam have are obtained in traveling-wave tubes, considering multi-signal inputs and relativistic effect. The equations include excited equation, motion equations, energy conversion equation, phase evolving equation etc., which can be applied to simulate most of nonlinear interactions between slow electromagnetic traveling wave and electronic beam in traveling wave tubes (TWT). The crossmodulation in a wide-band helix TWT is simulated using this theory, and is compared with the experimentation results to confirm the theory. The nonlinear beam-wave interaction processes in a relativistic disk-loaded waveguide TWT are also been simulated using the theory.