Open Access
End structures of single-walled carbon nanotube at different temperatures
Author(s) -
Chen Wei,
Chih-Wei Luo
Publication year - 2006
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.386
Subject(s) - zigzag , carbon nanotube , materials science , nanotube , carbon nanotube quantum dot , nanotechnology , molecular dynamics , carbon fibers , chemical physics , composite material , computational chemistry , physics , chemistry , geometry , mathematics , composite number
We have simulated the end structures of perfect single-walled carbon nanotube at temperatures from 2000 K to 3500 K using tight binding molecular dynamics method. Our calculations suggest that the effect of temperature on the ends of the nanotubes is important. The two ends of a perfect single-walled carbon nanotube closes in turn at 3000 K and 3500 K within 15 ps. As the temperature increases, the two ends of a perfect single-walled carbon nanotube will close more quickly. Both processes of closing of two ends are accompanied by the lowing of the system energy. Moreover, the ends of armchair-type carbon nanotube close easier than those of zigzag carbon nanotube with the same diameter due to the lower strain energy of the former.