
FDTD analysis of 3-D conducting target coated by anisotropic magnetized plasma
Author(s) -
Liukang Xu,
Shaobin Liu,
Mo Jin-Jun,
Naichang Yuan
Publication year - 2006
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.3470
Subject(s) - finite difference time domain method , plasma , physics , anisotropy , electromagnetic radiation , scattering , optics , wave propagation , computational physics , quantum mechanics
The JEC finite-difference time-domain (JEC-FDTD) method is extended to three dimensional anisotropic dispersive media—the magnetized plasma. The problem which incorporates both anisotropy and frequency dispersion at the same time is solved for the electromagnetic wave propagation. The three dimensional JEC-FDTD formulations for anisotropic magnetized plasma are derived. The method is applied to the electromagnetic scattering of dihedral corner reflector and sphere-cone coated with anisotropic magnetized plasma. By simulating the interaction of electromagnetic wave with magnetized plasma, some numerical results are obtained, which indicate that an appropriate plasma coating may efficiently reduce the RCS of a metallic target.