z-logo
open-access-imgOpen Access
The effect of ion oscillation on the self-sustenance of low pressure electronegative discharge
Author(s) -
Wu Yanqing,
Xiao Tiqiao
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.3443
Subject(s) - ion , atomic physics , oscillation (cell signaling) , electron , plasma , materials science , collision frequency , glow discharge , physics , chemistry , nuclear physics , biochemistry , quantum mechanics
It is a common way to obtain ion-ion plasmas from pulsed electronegative discharges. The pumping pulse can excite ion oscillation at the early active glow stage of a pulsed electronegative discharge. To study the ion oscillation and its influence on the self-sustaining condition of the discharge, a global model was developed to describe the interaction between ion oscillation and a small amount of electrons in a low-pressure ion-ion plasma. A parameter r was introduced in this model to describe the momentum residual/loss of the electrons after the collision with the electrodes. It was found a critical value r=rc that differentiates two electron loss mechanisms. Another critical value r=4rc determines two different threshold of the electron density growth. Thus, the threshold of the electron density growth is non-monotonously depend on r. Therefore, there might be a gap existing in the parameter space of the self-sustaining condition. The above result has been examined by a particle-in-cell simulation with Monte-Carlo collision (PIC-MCC).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom