FDTD simulation for magnetized plasma photonic crystals
Author(s) -
Shaobin Liu,
Changqing Gu,
Zhou Jian-jiang,
Naichang Yuan
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.1283
Subject(s) - finite difference time domain method , photonic crystal , plasma , reflection (computer programming) , physics , optics , electromagnetic radiation , photonics , dielectric , computational physics , optoelectronics , quantum mechanics , computer science , programming language
Magnetized plasma photonic crystals are artificial periodic structures composed of magnetized plasmas and dielectric structures (or vacuum).In this paper,the piecewise linear current density recursive convolution (PLCDRC) finite-difference time-domain (FDTD) method for magnetized plasmas is applied to study the magnetized plasma photonic crystals.The effect of parameters of magnetized plasma on electromagnetic band gap is presented.In time-domain,the electromagnetic propagation process and reflection/transmission electric field of Gaussian pulses through magnetized plasma photonic crystals are investigated.In frequency-domain,the reflection and transmission coefficients through magnetized plasma photonic crystals are computed.The results are discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom