z-logo
open-access-imgOpen Access
Study on Z-scan characteristics for large optical nonlinear phase shift
Author(s) -
Shuqi Chen,
Zhibo Liu,
Wei-Ping Zang,
Tian Jian-Guo,
Zhou Wen-Yuan,
Chunping Zhang
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.1211
Subject(s) - z scan technique , laser , nonlinear system , phase (matter) , materials science , optics , picosecond , physics , atomic physics , nonlinear optics , quantum mechanics
Using Gaussian decomposition (GD) method, we studied the theory of Z-scan with large nonlinear phase shift induced by a pulsed laser. It has been verified that the GD method is still valid to deal with analysis of Z-scan measurements with large nonlinear phase shift. By comparing the peak-valley configuration of the Z-scan curves for large nonlinear phase shift induced by pulsed and CW laser, we found that some new peak-valley features of the Z-scan curves appear as the aperture size or light intensity increases in the case of large nonlinear phase shift. Meanwhile, we carried out the Z-scan experiments of pure CS2 to confirm the results of numerical simulation in the case of large nonlinear phase shift induced by a picosecond pulsed laser. The experimental results agree well with the theoretical. Our results have some significance to the measurement of Z-scan with large nonlinear phase shift induced by a pulsed laser.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom