z-logo
open-access-imgOpen Access
Variable separation solution and soliton excitations of the (1+1)-dimensional generalised shallow water wave equation
Author(s) -
Shoufeng Shen
Publication year - 2006
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.55.1016
Subject(s) - integrable system , breather , soliton , one dimensional space , variable (mathematics) , separation of variables , space (punctuation) , transformation (genetics) , mathematical physics , mathematical analysis , physics , function (biology) , camassa–holm equation , mathematics , quantum mechanics , partial differential equation , nonlinear system , linguistics , philosophy , biochemistry , chemistry , evolutionary biology , biology , gene
In this paper, variable separation solution and soliton excitations of the (1+1)-dimensional generalised shallow water wave equation are obtained. This equation includes two special cases which are completely integrable (IST integrable): the AKNS equation and the Hirota-Satsuma equation. Firstly, the variable separation (BT-VS) method based on the Bcklund transformation is extended to this eqaution for deriving VS solutions which include some low dimensional arbitrary functions. In the integrable cases, a space arbitrary function and a time arbitrary function are included. But in the other cases only a time arbitrary function is included and the space function needs to satisfy a specific condition. In addition, for the (1+1)-dimensional universal formula, abundant soliton excitations can be constructed, such as one-soliton, bell-anti-bell soltion, soliton expansion, breather-like, instaton-like. Finally, some discusions are made about the VT-VS method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom