z-logo
open-access-imgOpen Access
Study of temperature dependent electroluminescence of InGaN/GaN multiple quantum wells using low temperature scanning near-field optical microscopy
Author(s) -
Xu Geng-Zhao,
Liang Hu,
Bai Yong-Qiang,
Kei May Lau,
Xing Zhu
Publication year - 2005
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.54.5344
Subject(s) - electroluminescence , materials science , liquid nitrogen , quantum well , optoelectronics , photon energy , photon , semiconductor , optics , condensed matter physics , layer (electronics) , physics , laser , nanotechnology , quantum mechanics
Though GaN based semiconductor materials and devices have achieved giant commerc ial success, there were few reports on their electroluminescent near-field optic al studies at low temperature. In this paper we present our results of the elect roluminescent near-field images and spectra at both room temperature and liquid nitrogen temperature by using a lab-made low temperature scanning near-field opt ical microscope. We found that with the decreasing of sample temperature, the fl uctuation of electroluminescent intensity in the near-field images is reduced gr eatly and the peak photon energy of the spectra emitted from the quantum wells e xhibits a blue-shift at first and then a red-shift. A new spectral peak emerges at higher photon energy at liquid nitrogen temperature. According to our analysi s, this higher photon energy peak is attributed to the transition from the botto m of conduction band to the acceptor energy states in the p-GaN cap layer.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom