Calculation of helium 1D—3D term intervals for 1snd(n=4—11) states
Author(s) -
He Li-Ming,
Wei Cao,
Chen Xue-Qian,
Zhu Yun-Xia
Publication year - 2005
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.54.5077
Subject(s) - rydberg formula , physics , perturbation (astronomy) , perturbation theory (quantum mechanics) , helium , wave function , bound state , singlet state , rayleigh scattering , series expansion , atomic physics , quantum mechanics , excited state , ionization , ion
With many-body perturbation theory (MBPT), 1D—3D term intervals of helium 1snd(n=4—11) configurations have been calculated. Based on two different models, Rayleigh-Schrdinger perturbation expansion terms only consisting of bound states and those of continua are calculated respectively. For bound states, the zeroth-order wave functions are strictly generated from self-iteration solutions of Hartree equation and residues of infinite perturbation series are dealt with by integral processing method. For continuum parts, a simplified hydrogen potential model is adopted. According to Rayleigh-Schrdinger expansion, the perturbation corrections to Rydberg states have been evaluated up to the third-order terms. From the calculation, the energy splittings are mainly attributed to bound parts. Singlet-triplet level splittings yielded here are found to agree quite well with two sets of experimental results.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom