Laser-induced thermal analysis for mask layer of transmitted-aperture type super-RENS in optical storage
Author(s) -
Quanhong Shen,
Duanyi Xu,
Qi Guo-Sheng,
Hu Heng,
Rong Liu
Publication year - 2005
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.54.4718
Subject(s) - laser , optics , optical storage , materials science , thermal , layer (electronics) , aperture (computer memory) , optoelectronics , physics , composite material , acoustics , meteorology
The forming of transmitted-aperture in Sb layer of Super-RENS was studied based on laser-induced thermal model with Gauss assumption. The optical transmit model was created with optical admittance characteristic matrix. A numerical simulation was carried out by FEMLAB to understand the forming process of the aperture. The simulation results showed that transmitted aperture would not be formed until the exposure power exceeded a threshold within a certain pulse time, further more, the aperture size would be increased if the power was raised. The static writing experiment for transmitted-aperture type Super-RENS was carried out. The experiment results well agree with the simulation. It is concluded that a laser-induced thermal model could well describe the forming of aperture in Sb layer of transmitted-aperture type Super-RENS in optical data storage.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom