z-logo
open-access-imgOpen Access
Capacitive humidity-sensing properties of Si-NPA and Fe3O4/Si-NPA
Author(s) -
Haiyan Wang,
Xinjian Li
Publication year - 2005
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.54.2220
Subject(s) - materials science , humidity , capacitive sensing , capacitive deionization , optoelectronics , computer science , electrochemistry , meteorology , electrode , physics , quantum mechanics , operating system
The preparation of silicon nanoporous pillar array (Si-NPA) and Fe3O 4 coated Si-NPA (Fe3O4/Si-NPA) is presented. The morphologies and microstructures of the two kinds of thin films were characterized and their corresponding capacit ive humidity sensing properties investigated. It was shown that both Si-NPA and Fe3O4/Si-NPA are typical micron/nanometer structural compo site systems. When the relative humidity increased from 11% to 95%, the capacitances reached 1500% and 5500% of their initial values measured with 100 Hz signal frequency, and 800% and 12000% measured with 1000 Hz signal frequency, for Si-NPA and Fe3O4/S i-NPA, respectively. At the same time, both of the two thin films exhibited quic k response speed, the response times in the humidity-increment and humidity-decr ement processes were determined to be 15 s and 5 s for Si-NPA, and 20 s and 15 s for Fe3O4/Si-NPA, respectively. These excellent humidity sensing properties of Si-NPA and Fe3O4/Si-NPA are explained based on thei r corresponding morph ological and structural properties. Our experiments strongly indicated that Si-N PA is an ideal thin film both for direct humidity sensing and as a substrate for growing composite humidity sensing materials.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here