
Field emission from individual vertically carbon nanofibers
Author(s) -
Haijun Li,
Changzhi Gu,
Dou Yan,
Junjie Li
Publication year - 2004
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.53.2258
Subject(s) - field electron emission , carbon nanofiber , materials science , carbon fibers , field (mathematics) , engineering physics , nanotechnology , carbon nanotube , physics , electron , composite material , nuclear physics , mathematics , composite number , pure mathematics
Individual high-aspectratio carbon nanofibers(CNFs) were grown on W wire by plasma-enhanced hot filament chemical vapor deposition method, using a gas mixture of methane and hydrogen. The average diameter and length of carbon nanofibers are 60—100 nm and 6—30 μm, respectively, and the density of carbon nanofibers is less than 10.6cm-2. The field emission properties from individual carbon nanofibers have been measured using a movable W probe with a low-curvature radius. The results indicated that the CNFs showed a turn on field of about 5 V/μm and the field-emission current density of 20μA/cm2 at 5 V/μm.The experimental data also indicated that the length of CNFs and the position of a CNF are responsible for the properties of field emission related to the parameters such as the work function of materials, applied field and the field amplification factor. Furthermore, the electron scattering induced by defects in CNFs is also a key factor on the field-emission current.