
Fractal structure of water molecular gels formedby the aggregation of organogelators
Author(s) -
Wang Li,
Jian Li,
Yajiang Yang
Publication year - 2004
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.53.160
Subject(s) - fractal dimension , fractal , materials science , aggregate (composite) , transmission electron microscopy , chemical physics , scattering , fractal analysis , nanotechnology , optics , chemistry , physics , mathematics , mathematical analysis
Water molecular gel is a kind of soft condensed systems. It was formed by the aggregation and self-assembly of gelator 4,4′-bisstearylamide diphenyl ether (BSADE) which makes water into gelation at very low concentration in water. Its microcosmic morphology, thin fibre-like aggregate, was observed by transmission electron microscope(TEM) of the gels. By digitalized treatment of TEM photos, the structure of three-dimensional networks of gels shows a typical fractal characteristic. The fractal dimension D of the gels was calculated by the methods of Sandbox and density-density correlation function under the C++ program. The fractal dimension D calculated by the two methods is in the range of 1.814—1.977. Through the fractal theory, the aggregation process of gelator and the fractal characteristic of the gels was discussed. Further investigation by small angle x-ray scattering indicated that the fractal scale of the gels is between α=1nm and ε=40nm. and fractal characteristic was shown in a larger area. Its fractal dimension is 1.9, which is in agreement with the results from TEM method.