z-logo
open-access-imgOpen Access
The quasi-wavelet solutions of MKdV equations
Author(s) -
Tang Jia-Shi,
Zhuyong Liu,
Xueping Li
Publication year - 2003
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.52.522
Subject(s) - wavelet , mathematics , scheme (mathematics) , mathematical analysis , order (exchange) , computer science , finance , artificial intelligence , economics
The quasi-wavelet method is used for obtaining the numerical solution of the MKdV equation- The quasi-wavelet discrete scheme is adopted to make the spatial derivatives discrete, while the fourth-order Runge-Kutta method is adopted to make the temporal derivative discrete- One of the MKdV equation ut+6u2ux+uxxx=0, which has an analytical solution, is solved numerically- The numerical results are well consistent with the analytical solutions, even at t=10000s-

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom