The Largest Lyapunov Exponent of Coupled Map Lattice Systems
Author(s) -
Shi Peng-Liang,
Gang Hu,
XU Li-mei
Publication year - 2000
Publication title -
acta physica sinica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.49.24
Subject(s) - lyapunov exponent , coupled map lattice , plateau (mathematics) , exponent , coupling (piping) , coupling coefficient of resonators , physics , statistical physics , lattice (music) , mathematical analysis , mathematics , nonlinear system , materials science , quantum mechanics , optics , computer science , control theory (sociology) , synchronization of chaos , linguistics , philosophy , control (management) , artificial intelligence , resonator , acoustics , metallurgy
Based on the investigation of the largest Lyapunov exponent of coupled map latti ce systems it is found that in the parameter region of chaos if the system is large enough and the coupling coefficient is neither too small nor too large th e largest Lyapunov exponent of the system has a plateau which does not vary wit h the size and the coupling coefficient. The physical meaning of this flat pla teau is discussed.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom