Open Access
EFFECT OF ANNEALING ON THE MAGNETIC PROPERTIES OF Ni80Co20 THIN FILMS WITH IMPURITY LAYERS
Author(s) -
Liuniu Tong,
He Xian-Mei,
M. Lu
Publication year - 2000
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.49.2290
Subject(s) - materials science , impurity , magnetoresistance , condensed matter physics , coercivity , alloy , annealing (glass) , scattering , thin film , magnetic field , nuclear magnetic resonance , analytical chemistry (journal) , composite material , optics , nanotechnology , chemistry , physics , organic chemistry , chromatography , quantum mechanics
The magnetic and transport properties of two series of sputtered Ni80Co20(L)/Fe(tFe)N multilayers (MLs) with different Fe layer thickness of tFe=0.1 and 2nm, and varying L were studied and compared with each other. An enhanced anisotropic magnetoresistance (AMR) peak around L=10nm was observed for annealed films with tFe=0.1nm. The position of the enhanced AMR peak is the same as that of transversal MR peak for the deposited MLs with tFe=2nm. For the as-deposited films with impurity Fe layers, when L becomes lower than the electron mean free path of Ni80Co20 alloy, the zero-field resistivity ρ increases with decreasing L and the increase of ρ will exceed that of AMR (Δρ). The L dependence of ρ can be described by Fuchs-Sondheimer theory. The coercivity Hc of the as-deposited films with tFe=0.1nm increases rapidly with increasing L for L15nm and is almost saturated for L15nm. The dependence of Hc on may be related to the interface structure of MLs, which is indicated by a big drop of Hc in the annealed films. Our experimental data show that the interface scattering in MLs may increase AMR; the magnetic alloy interfacial layers in MLs may change the domain structure and enhance transverse MR and AMR.