
RADIUS OF NUCLEAR CHARGE DISTRIBUTION AND NUCLEAR BINDING ENERGY
Author(s) -
Tseng Chin-Yuen
Publication year - 1957
Publication title -
wuli xuebao
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.199
H-Index - 47
ISSN - 1000-3290
DOI - 10.7498/aps.13.357
Subject(s) - physics , radius , binding energy , effective nuclear charge , coulomb , atomic physics , charge radius , scattering , nuclear binding energy , electron , atomic number , spectral line , charge density , charge (physics) , nuclear physics , quantum mechanics , computer security , proton , computer science
From the analysis of the experimental results (high energy electron scattering, X-ray spectra of μ-mesonic atoms), it is pointed out that the radius of nuclear charge distribution, Rp, is very nearly proportional to the cubic root of the atomic number z1/3, ins tead of the usually accepted relation Rp∝A1/3. Under this assumption, we have modified the semi-empirical mass formula. The Coulomb energy term is now assummed to be of the form 3/5 (z2e2)/ropz1/3).The aagreement of the nuclear binding energies calculated fromthe new fomula with the experimental data is definitely better than that of the old Bethe-Weizsacker formula. Also the mass numbers of the most beta-stable nuclei are very correctly predicated by the new formula.