z-logo
open-access-imgOpen Access
Distance irregularity strength of graphs with pendant vertices
Author(s) -
Faisal Susanto,
Kristiana Wijaya,
Slamin,
Andrea Semaničová–Feňovčíková
Publication year - 2022
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2022.42.3.439
Subject(s) - combinatorics , vertex (graph theory) , mathematics , graph , neighbourhood (mathematics) , pairwise comparison , simple graph , mathematical analysis , statistics
A vertex \(k\)-labeling \(\phi:V(G)\rightarrow\{1,2,\dots,k\}\) on a simple graph \(G\) is said to be a distance irregular vertex \(k\)-labeling of \(G\) if the weights of all vertices of \(G\) are pairwise distinct, where the weight of a vertex is the sum of labels of all vertices adjacent to that vertex in \(G\). The least integer \(k\) for which \(G\) has a distance irregular vertex \(k\)-labeling is called the distance irregularity strength of \(G\) and denoted by \(\mathrm{dis}(G)\). In this paper, we introduce a new lower bound of distance irregularity strength of graphs and provide its sharpness for some graphs with pendant vertices. Moreover, some properties on distance irregularity strength for trees are also discussed in this paper.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here