
Exponential decay of solutions to a class of fourth-order nonlinear hyperbolic equations modeling the oscillations of suspension bridges
Author(s) -
Yang Liu,
Chao Yang
Publication year - 2022
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2022.42.2.239
Subject(s) - mathematics , nonlinear system , suspension (topology) , class (philosophy) , mathematical analysis , exponential function , order (exchange) , exponential decay , exponential growth , hyperbolic partial differential equation , pure mathematics , physics , partial differential equation , quantum mechanics , computer science , finance , artificial intelligence , homotopy , economics
This paper is concerned with a class of fourth-order nonlinear hyperbolic equations subject to free boundary conditions that can be used to describe the nonlinear dynamics of suspension bridges.