Exponential decay of solutions to a class of fourth-order nonlinear hyperbolic equations modeling the oscillations of suspension bridges
Author(s) -
Yang Liu,
Chao Yang
Publication year - 2022
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2022.42.2.239
Subject(s) - mathematics , nonlinear system , suspension (topology) , class (philosophy) , mathematical analysis , exponential function , order (exchange) , exponential decay , exponential growth , hyperbolic partial differential equation , pure mathematics , physics , partial differential equation , quantum mechanics , computer science , finance , artificial intelligence , homotopy , economics
This paper is concerned with a class of fourth-order nonlinear hyperbolic equations subject to free boundary conditions that can be used to describe the nonlinear dynamics of suspension bridges.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom