
The Krein-von Neumann extension of a regular even order quasi-differential operator
Author(s) -
Minsung Cho,
Seth Hoisington,
Roger Nichols,
Brian Udall
Publication year - 2021
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2021.41.6.805
Subject(s) - mathematics , differential operator , extension (predicate logic) , operator (biology) , pure mathematics , neumann boundary condition , boundary value problem , mathematical analysis , order (exchange) , boundary (topology) , biochemistry , chemistry , finance , repressor , computer science , transcription factor , economics , gene , programming language
We characterize by boundary conditions the Krein-von Neumann extension of a strictly positive minimal operator corresponding to a regular even order quasi-differential expression of Shin-Zettl type. The characterization is stated in terms of a specially chosen basis for the kernel of the maximal operator and employs a description of the Friedrichs extension due to Möller and Zettl.