
Closed range weighted composition operators between L^{p}-spaces
Author(s) -
Ching-on Lo,
Anthony Wai-keung Loh
Publication year - 2021
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2021.41.5.649
Subject(s) - mathematics , composition (language) , class (philosophy) , range (aeronautics) , pure mathematics , sequence (biology) , combinatorics , composition operator , weighted arithmetic mean , finite rank operator , banach space , statistics , chemistry , philosophy , linguistics , materials science , biochemistry , artificial intelligence , computer science , composite material
We characterize the closedness of ranges of weighted composition operators between \(L^p\)-spaces, where \(1 \leq p \leq \infty\). When the \(L^p\)-spaces are weighted sequence spaces, several corollaries about this class of operators are also deduced.