
Total connected domination game
Author(s) -
Csilla Bujtás,
Michael A. Henning,
Vesna Iršič,
Sandi Klavžar
Publication year - 2021
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2021.41.4.453
Subject(s) - combinatorics , cartesian product , mathematics , bipartite graph , domination analysis , graph , class (philosophy) , product (mathematics) , discrete mathematics , vertex (graph theory) , computer science , artificial intelligence , geometry
The (total) connected domination game on a graph \(G\) is played by two players, Dominator and Staller, according to the standard (total) domination game with the additional requirement that at each stage of the game the selected vertices induce a connected subgraph of \(G\). If Dominator starts the game and both players play optimally, then the number of vertices selected during the game is the (total) connected game domination number (\(\gamma_{\rm tcg}(G)\)) \(\gamma_{\rm cg}(G)\) of \(G\). We show that \(\gamma_{\rm tcg}(G) \in \{\gamma_{\rm cg}(G),\gamma_{\rm cg}(G) + 1,\gamma_{\rm cg}(G) + 2\}\), and consequently define \(G\) as Class \(i\) if \(\gamma_{\rm tcg}(G) = \gamma_{\rm cg} + i\) for \(i \in \{0,1,2\}\). A large family of Class \(0\) graphs is constructed which contains all connected Cartesian product graphs and connected direct product graphs with minumum degree at least \(2\). We show that no tree is Class \(2\) and characterize Class \(1\) trees. We provide an infinite family of Class \(2\) bipartite graphs.