Multi-variable quaternionic spectral analysis
Author(s) -
Ilwoo Cho,
Palle E. T. Jørgensen
Publication year - 2021
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2021.41.3.335
Subject(s) - quaternion , mathematics , ring (chemistry) , combinatorics , functional analysis , variable (mathematics) , spectral analysis , spectral representation , pure mathematics , representation (politics) , functional equation , mathematical analysis , geometry , differential equation , physics , spectroscopy , quantum mechanics , biochemistry , chemistry , organic chemistry , gene , politics , political science , law
In this paper, we consider finite dimensional vector spaces \(\mathbb{H}^n\) over the ring \(\mathbb{H}\) of all quaternions. In particular, we are interested in certain functions acting on \(\mathbb{H}^n\), and corresponding functional equations. Our main results show that (i) all quaternions of \(\mathbb{H}\) are classified by the spectra of their realizations under representation, (ii) all vectors of \(\mathbb{H}^n\) are classified by a canonical extended setting of (i), and (iii) the usual spectral analysis on the matricial ring \(M_n(\mathbb{C})\) of all \((n \times n)\)-matrices over the complex numbers \(\mathbb{C}\) has close connections with certain "non-linear" functional equations on \(\mathbb{H}^n\) up to the classification of (ii).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom