z-logo
open-access-imgOpen Access
Remarks on the outer-independent double Italian domination number
Author(s) -
Lutz Volkmann
Publication year - 2021
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2021.41.2.259
Subject(s) - combinatorics , mathematics , domination analysis , vertex (graph theory) , graph , dominating set
Let \(G\) be a graph with vertex set \(V(G)\). If \(u\in V(G)\), then \(N[u]\) is the closed neighborhood of \(u\). An outer-independent double Italian dominating function (OIDIDF) on a graph \(G\) is a function \(f:V(G)\longrightarrow \{0,1,2,3\}\) such that if \(f(v)\in\{0,1\}\) for a vertex \(v\in V(G)\), then \(\sum_{x\in N[v]}f(x)\ge 3\), and the set \(\{u\in V(G):f(u)=0\}\) is independent. The weight of an OIDIDF \(f\) is the sum \(\sum_{v\in V(G)}f(v)\). The outer-independent double Italian domination number \(\gamma_{oidI}(G)\) equals the minimum weight of an OIDIDF on \(G\). In this paper we present Nordhaus-Gaddum type bounds on the outer-independent double Italian domination number which improved corresponding results given in [F. Azvin, N. Jafari Rad, L. Volkmann, Bounds on the outer-independent double Italian domination number, Commun. Comb. Optim. 6 (2021), 123-136]. Furthermore, we determine the outer-independent double Italian domination number of some families of graphs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here