z-logo
open-access-imgOpen Access
On the crossing numbers of join products of W_{4}+P_{n} and W_{4}+C_{n}
Author(s) -
Michal Staš,
Juraj Valiska
Publication year - 2021
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2021.41.1.95
Subject(s) - combinatorics , mathematics , conjecture , join (topology) , crossing number (knot theory) , product (mathematics) , graph , path (computing) , geometry , intersection (aeronautics) , engineering , aerospace engineering , computer science , programming language
The crossing number \(\mathrm{cr}(G)\) of a graph \(G\) is the minimum number of edge crossings over all drawings of \(G\) in the plane. The main aim of the paper is to give the crossing number of the join product \(W_4+P_n\) and \(W_4+C_n\) for the wheel \(W_4\) on five vertices, where \(P_n\) and \(C_n\) are the path and the cycle on \(n\) vertices, respectively. Yue et al. conjectured that the crossing number of \(W_m+C_n\) is equal to \(Z(m+1)Z(n)+(Z(m)-1) \big \lfloor \frac{n}{2} \big \rfloor + n+ \big\lceil\frac{m}{2}\big\rceil +2\), for all \(m,n \geq 3\), and where the Zarankiewicz's number \(Z(n)=\big \lfloor \frac{n}{2} \big \rfloor \big \lfloor \frac{n-1}{2} \big \rfloor\) is defined for \(n\geq 1\). Recently, this conjecture was proved for \(W_3+C_n\) by Klešč. We establish the validity of this conjecture for \(W_4+C_n\) and we also offer a new conjecture for the crossing number of the join product \(W_m+P_n\) for \(m\geq 3\) and \(n\geq 2\).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here