z-logo
open-access-imgOpen Access
Existence and decay of finite energy solutions for semilinear dissipative wave equations in time-dependent domains
Author(s) -
Mitsuhiro Nakao
Publication year - 2020
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2020.40.6.725
Subject(s) - uniqueness , dissipative system , mathematics , bounded function , omega , energy (signal processing) , domain (mathematical analysis) , mathematical analysis , mathematical physics , boundary (topology) , wave equation , combinatorics , physics , quantum mechanics , statistics
We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylindrical domain \(\bigcup_{0\leq t \lt\infty} \Omega(t)\times\{t\} \subset \mathbb{R}^N\times \mathbb{R}\). We are interested in finite energy solution. We derive an exponential decay of the energy in the case \(\Omega(t)\) is bounded in \(\mathbb{R}^N\) and the estimate \[\int\limits_0^{\infty} E(t)dt \leq C(E(0),\|u(0)\|)< \infty\] in the case \(\Omega(t)\) is unbounded. Existence and uniqueness of finite energy solution are also proved.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here