z-logo
open-access-imgOpen Access
On 2-rainbow domination number of functigraph and its complement
Author(s) -
Athena Shaminezhad,
Ebrahim Vatandoost
Publication year - 2020
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2020.40.5.617
Subject(s) - combinatorics , domination analysis , mathematics , vertex (graph theory) , rainbow , graph , disjoint sets , complement (music) , upper and lower bounds , physics , mathematical analysis , chemistry , biochemistry , quantum mechanics , complementation , gene , phenotype
Let \(G\) be a graph and \(f:V (G)\rightarrow P(\{1,2\})\) be a function where for every vertex \(v\in V(G)\), with \(f(v)=\emptyset\) we have \(\bigcup_{u\in N_{G}(v)} f(u)=\{1,2\}\). Then \(f\) is a \(2\)-rainbow dominating function or a \(2RDF\) of \(G\). The weight of \(f\) is \(\omega(f)=\sum_{v\in V(G)} |f(v)|\). The minimum weight of all \(2\)-rainbow dominating functions is \(2\)-rainbow domination number of \(G\), denoted by \(\gamma_{r2}(G)\). Let \(G_1\) and \(G_2\) be two copies of a graph G with disjoint vertex sets \(V(G_1)\) and \(V(G_2)\), and let \(\sigma\) be a function from \(V(G_1)\) to \(V(G_2)\). We define the functigraph \(C(G,\sigma)\) to be the graph that has the vertex set \(V(C(G,\sigma)) = V(G_1)\cup V(G_2)\), and the edge set \(E(C(G,\sigma)) = E(G_1)\cup E(G_2 \cup \{uv ; u\in V(G_1), v\in V(G_2), v =\sigma(u)\}\). In this paper, \(2\)-rainbow domination number of the functigraph of \(C(G,\sigma)\) and its complement are investigated. We obtain a general bound for \(\gamma_{r2}(C(G,\sigma))\) and we show that this bound is sharp.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here