
Deformation of semicircular and circular laws via p-adic number fields and sampling of primes
Author(s) -
Ilwoo Cho,
Palle E. T. Jørgensen
Publication year - 2019
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2019.39.6.773
Subject(s) - mathematics , truncation (statistics) , combinatorics , space (punctuation) , banach space , mathematical analysis , statistics , philosophy , linguistics
In this paper, we study semicircular elements and circular elements in a certain Banach \(*\)-probability space \((\mathfrak{LS},\tau ^{0})\) induced by analysis on the \(p\)-adic number fields \(\mathbb{Q}_{p}\) over primes \(p\). In particular, by truncating the set \(\mathcal{P}\) of all primes for given suitable real numbers \(t\lt s\) in \(\mathbb{R}\), two different types of truncated linear functionals \(\tau_{t_{1}\lt t_{2}}\), and \(\tau_{t_{1}\lt t_{2}}^{+}\) are constructed on the Banach \(*\)-algebra \(\mathfrak{LS}\). We show how original free distributional data (with respect to \(\tau ^{0}\)) are distorted by the truncations on \(\mathcal{P}\) (with respect to \(\tau_{t\lt s}\), and \(\tau_{t\lt s}^{+}\)). As application, distorted free distributions of the semicircular law, and those of the circular law are characterized up to truncation.