z-logo
open-access-imgOpen Access
Positive solutions of boundary value problems with nonlinear nonlocal boundary conditions
Author(s) -
Seshadev Padhi,
Smita Pati,
D. K. Hota
Publication year - 2015
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2016.36.1.69
Subject(s) - nonlinear system , boundary value problem , mathematics , mathematical analysis , order (exchange) , boundary (topology) , function (biology) , continuous function (set theory) , physics , quantum mechanics , finance , evolutionary biology , economics , biology
We consider the existence of at least three positive solutions of a nonlinear first order problem with a nonlinear nonlocal boundary condition given by \[\begin{aligned} x^{\prime}(t)& = r(t)x(t) + \sum_{i=1}^{m} f_i(t,x(t)), \quad t \in [0,1],\\ \lambda x(0)& = x(1) + \sum_{j=1}^{n} \Lambda_j(\tau_j, x(\tau_j)),\quad \tau_j \in [0,1],\end{aligned}\] where \(r:[0,1] \rightarrow [0,\infty)\) is continuous; the nonlocal points satisfy \(0 \leq \tau_1 \lt \tau_2 \lt \ldots \lt \tau_n \leq 1\), the nonlinear function \(f_i\) and \(\tau_j\) are continuous mappings from \([0,1] \times [0,\infty) \rightarrow [0,\infty)\) for \(i = 1,2,\ldots ,m\) and \(j = 1,2,\ldots ,n\) respectively, and \(\lambda \gt 0\) is a positive parameter

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom