
Rigidity of monodromies for Appell's hypergeometric functions
Author(s) -
Yoshishige Haraoka,
Tatsuya Kikukawa
Publication year - 2015
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2015.35.5.567
Subject(s) - mathematics , lauricella hypergeometric series , rigidity (electromagnetism) , appell series , pure mathematics , hypergeometric function , generalized hypergeometric function , hypergeometric function of a matrix argument , composite material , materials science
For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity