
Existence and uniqueness of the solutions of some degenerate nonlinear elliptic equations
Author(s) -
Albo Carlos Cavalheiro
Publication year - 2014
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2014.34.1.15
Subject(s) - uniqueness , mathematics , degenerate energy levels , nonlinear system , mathematical analysis , physics , quantum mechanics
In this paper we are interested in the existence of solutions for the Dirichlet problem associated with degenerate nonlinear elliptic equations \[\begin{split}&-\sum_{j=1}^n D_j{\bigl[}{\omega}(x) {\cal A}_j(x, u, {\nabla}u){\bigr]} + b(x, u, {\nabla}u)\,{\omega}(x) + g(x)\,u(x)=\\&= f_0(x) - \sum_{j=1}^nD_jf_j(x) \quad{\rm on}\quad {\Omega}\end{split}\] in the setting of the weighted Sobolev spaces \({\rm W}_0^{1,p}(\Omega, \omega)\)