z-logo
open-access-imgOpen Access
Energy integral of the Stokes flow in a singularly perturbed exterior domain
Author(s) -
Matteo Dalla Riva
Publication year - 2012
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2012.32.4.647
Subject(s) - mathematics , stokes flow , domain (mathematical analysis) , energy (signal processing) , flow (mathematics) , stokes problem , mathematical analysis , integral domain , geometry , pure mathematics , physics , statistics , thermodynamics , finite element method , field (mathematics)
We consider a pair of domains \(\Omega ^b\) and \(\Omega ^s\) in \(\mathbb{R}^n\) and we assume that the closure of \(\Omega ^b\) does not intersect the closure of \(\epsilon \Omega ^s\) for \(\epsilon \in (0,\epsilon _0)\). Then for a fixed \(\epsilon \in (0,\epsilon_0)\) we consider a boundary value problem in \(\mathbb{R}^n \setminus (\Omega ^b \cup \epsilon \Omega ^s)\) which describes the steady state Stokes flow of an incompressible viscous fluid past a body occupying the domain \(\Omega ^b\) and past a small impurity occupying the domain \(\epsilon \Omega ^s\). The unknown of the problem are the velocity field \(u\) and the pressure field \(p\), and we impose the value of the velocity field \(u\) on the boundary both of the body and of the impurity. We assume that the boundary velocity on the impurity displays an arbitrarily strong singularity when \(\epsilon\) tends to 0. The goal is to understand the behaviour of the strain energy of \( (u, p)\) for \(\epsilon\) small and positive. The methods developed aim at representing the limiting behaviour in terms of analytic maps and possibly singular but completely known functions of \(\epsilon\), such as \(\epsilon ^{-1}\), \(\log \epsilon\)

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here