Hyponormal differential operators with discrete spectrum
Author(s) -
Zameddin I. İsmailov,
Erdal Ünlüyol
Publication year - 2010
Publication title -
opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2010.30.1.79
Subject(s) - mathematics , spectrum (functional analysis) , eigenvalues and eigenvectors , differential operator , hilbert space , operator (biology) , interval (graph theory) , pure mathematics , order (exchange) , mathematical analysis , combinatorics , biochemistry , chemistry , finance , repressor , transcription factor , economics , gene , physics , quantum mechanics
In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom