z-logo
open-access-imgOpen Access
Hyponormal differential operators with discrete spectrum
Author(s) -
Zameddin I. İsmailov,
Erdal Ünlüyol
Publication year - 2010
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2010.30.1.79
Subject(s) - mathematics , spectrum (functional analysis) , eigenvalues and eigenvectors , differential operator , hilbert space , operator (biology) , interval (graph theory) , pure mathematics , order (exchange) , mathematical analysis , combinatorics , biochemistry , chemistry , finance , repressor , transcription factor , economics , gene , physics , quantum mechanics
In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here