
Hyponormal differential operators with discrete spectrum
Author(s) -
Zameddin I. İsmailov,
Erdal Ünlüyol
Publication year - 2010
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2010.30.1.79
Subject(s) - mathematics , spectrum (functional analysis) , eigenvalues and eigenvectors , differential operator , hilbert space , operator (biology) , interval (graph theory) , pure mathematics , order (exchange) , mathematical analysis , combinatorics , biochemistry , chemistry , finance , repressor , transcription factor , economics , gene , physics , quantum mechanics
In this work, we first describe all the maximal hyponormal extensions of a minimal operator generated by a linear differential-operator expression of the first-order in the Hilbert space of vector-functions in a finite interval. Next, we investigate the discreteness of the spectrum and the asymptotical behavior of the modules of the eigenvalues for these maximal hyponormal extensions