
Topological classification of conformal actions on p-hyperelliptic and (q,n)-gonal Riemann surfaces
Author(s) -
Ewa Tyszkowska
Publication year - 2009
Publication title -
rocznik akademii górniczo-hutniczej im. stanisława staszica. opuscula mathematica/opuscula mathematica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.481
H-Index - 16
eISSN - 2300-6919
pISSN - 1232-9274
DOI - 10.7494/opmath.2009.29.4.443
Subject(s) - mathematics , riemann surface , conformal map , topology (electrical circuits) , pure mathematics , mathematical analysis , combinatorics
A compact Riemann surface \(X\) of genus \(g \gt 1\) is said to be \(p\)-hyperelliptic if \(X\) admits a conformal involution \(\rho\) for which \(X / \rho\) has genus \(p\). A conformal automorphism \(\delta\) of prime order \(n\) such that \(X / \delta\) has genus \(q\) is called a \((q,n)\)-gonal automorphism. Here we study conformal actions on \(p\)-hyperelliptic Riemann surface with \((q,n)\)-gonal automorphism