
Compensation Method of EKF Based on LSTM for Estimating State of Charge of Li-polymer Battery
Author(s) -
Beom-Jin Yoon,
Seoungyeol Yoo,
Sang Man Seong
Publication year - 2019
Publication title -
han'gug jadongca gonghaghoe nonmunjib/han-guk jadongcha gonghakoe nonmunjip
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.206
H-Index - 5
eISSN - 2234-0149
pISSN - 1225-6382
DOI - 10.7467/ksae.2019.27.7.501
Subject(s) - state of charge , battery (electricity) , compensation (psychology) , extended kalman filter , charge (physics) , polymer , state (computer science) , computer science , materials science , control theory (sociology) , kalman filter , artificial intelligence , algorithm , composite material , physics , power (physics) , thermodynamics , psychology , quantum mechanics , control (management) , psychoanalysis