z-logo
open-access-imgOpen Access
On the Application of Hall Thruster Working with Ambient Atmospheric Gas for Orbital Station-Keeping
Author(s) -
Dmitri Duhopel'nikov,
Sergey Ivakhnenko,
V. A. Ryazanov,
S. O. Shilov
Publication year - 2016
Publication title -
nauka i obrazovanie
Language(s) - English
Resource type - Journals
ISSN - 1994-0408
DOI - 10.7463/1216.0852758
Subject(s) - aerospace engineering , environmental science , aeronautics , astrobiology , meteorology , engineering , physics
The paper considers the application of the Hall thruster using the ambient atmospheric air for orbital station keeping. This is a relevant direction at the up-to-date development stage of propulsion systems. Many teams of designers of electric rocket thrusters evaluate the application of different schemes of particle acceleration at the low-earth orbit. Such technical solution allows us to abandon the storage systems of the working agent on the spacecraft board. Thus, lifetime of such a system at the orbit wouldn`t be limited by fuel range. The paper suggests a scheme of the propulsion device with a parabolic confuser that provides a required compression ratio of the ambient air for correct operation. Formulates physical and structural restrictions on ambient air to be used as a working agent of the thruster. Pointes out that the altitudes from 200 to 300 km are the most promising for such propulsion devices. Shows that for operation at lower altitudes are required the higher capacities that are not provided by modern onboard power supply systems. For the orbit heightening the air intakes with significant compression rate are of necessity. The size of such air intakes would exceed nose fairing of exploited space launch systems. To perform further design calculations are shown dependencies that allow us to calculate an effective diameter of the thruster channel and a critical voltage to be desirable for thrust force excess over air resistance. The dependencies to calculate minimal and maximal fluxes of neutral particles of oxygen and nitrogen, that are necessary for normal thruster operation, are also shown. Calculation results of the propulsion system parameters for the spacecrafts with cross-sectional area within 1 - 3 m2 and inlet diameter of air intake within 1 - 3 m are demonstrated. The research results have practical significance in design of advanced propulsion devices for lowaltitude spacecrafts. The work has been supported by the RFFR grant 16-38-00776\16 as of 25.02.201

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here