
The research is devoted to the computational analysis of bearing structures of launch system aggregates, which are designed for the prelaunch preparation and launch security of space rocket (SR) "SOYUZ-2" of 1B stage. The bearing structures taken under consideration are the following: supporting trusses (ST), bearing arms (BA), the upper cable girder (UCG), the umbilical mast (UM). The SR “SOYUZ-2" of 1B stage has the characteristics of the propulsion unit (PU) thrust, different from those of the "Soyuz" family space rockets exploited before.
The paper presents basic modeling principles to calculate units and their operating loadings. The body self-weight and the influence of a gas-dynamic jet of "SOYUZ-2.1B" propulsion unit have been considered as a load of units. Parameters of this influence are determined on the basis of impulse stream fields and of deceleration temperatures calculated for various SR positions according to the specified path of its ascent and demolition.
Physical models of the aggregates and calculations are based on the finite elements method and super-elements method using “SADAS” software package developed at the chair SM8 of Bauman Moscow State Technical University.
Fields of nodal temperatures distribution in the ST, BA, UCG, UM models, and fields of tension in finite elements as well represent the calculation results.
Obtained results revealed the most vulnerable of considered starting system aggregates, namely UM, which was taken for local durability calculation. As an example, this research considers calculation of local durability in the truss branches junction of UM rotary part, for which the constructive strengthening has been offered. For this node a detailed finite-element model built in the model of UM rotary part has been created. Calculation results of local durability testify that the strengthened node meets durability conditions.
SR developers used calculation results of launch system aggregates for the space rocket "SOYUZ-2.1B", as well as technical solutions on separate nodes strengthening with appropriate correction of engineering design package.