
Application of mills with a curvilinear profile of the cutting edge (often called rough end mills) allows us to increase milling rate, but a roughness of the surface treated by such mills is higher, than after milling by the "ordinary" mills with the "smooth" cutting edge. Deterioration of a roughness is caused by a curvature of cutting edge. The shape and sizes of a profile are of crucial importance for forming roughness on a surface. A literary review revealed that depending on a profile of the cutting edge the roughness of the machined surface makes Ra2…12,5μm.
There is a developed parametrical computer model to visualize roughness formed on a surface after milling by the fluting cutter and curved cutting edge mill. The computer model also allows a 3D chip type to be cut off from a work-piece by the mills with various cutting edge profiles. When developing the model it was assumed that the tilt angle of a cutting flute is equal 0 °, a trajectory of the tooth movement is a circle rather than a trochoidal curve.
An experimental test of the model has shown that the radial beats of the mill teeth have a very significant effect on the extent of the roughness formed on the machined surface. After amendments - taking into consideration teeth beats - introduced into model the modeling error made less than 5% that can be explained by the fact that profile parameters of the cutting edge of mills embedded in the model are inaccurate because of the tilt angle the cutting flutes.
The analysis of the surface model has shown that after milling the work piece has a cellular structure. Each tooth with curved cutting edge forms the cell repeating with the next turn of a mill. The adjacent teeth form identical cells displaced in the feed path with respect to the cell formed by the previous tooth by the chip load Sz. Unlike processing by the ordinary mills with the "smooth" cutting edge in this case on a surface there is a surface texture not only in the feed path, but in the axial direction as well.