The tests are an integral part of the wheeled vehicle design, manufacturing, and operation. The need for their conducting arises from the research and experimental activities to assess the qualitative and quantitative characteristics of the vehicles in general, as well as the individual components and assemblies. It is obvious that a variety of design features of wheeled vehicles request a development of methods both for experimental studies and for creating the original bench equipment for these purposes.
The main positive feature of bench tests of automotive engineering is a broad capability to control the combinations of traction loads, speed rates, and external input conditions. Here, the steady state conditions can be used for a long time, allowing all the necessary measurements to be made, including those with video and photo recording experiment.
It is known that the benefits of test "M" type (using a roller dynamometer) include a wide range of test modes, which do not depend on the climatic conditions, as well as a capability to use a computer-aided testing programs. At the same time, it is known that the main drawback of bench tests of full-size vehicle is that the tire rolling conditions on the drum mismatch to the real road pavements, which are difficult to simulate on the drum surface. This problem can be solved owing to wheeled vehicle tests at the benches "Roller" to be, in efficiency, the most preferable research method. The article gives a detailed presentation of developed at BMSTU approach to its solving.
Problem of simulation mathematical modeling has been solved for the vehicle with the wheel formula 8 × 8, and individual wheel-drive.
The simulation results have led to the conclusion that the proposed principle to simulate a vehicle rolling on a smooth non-deformable support base using a bench " Roller " by simulation modeling is efficient.