z-logo
open-access-imgOpen Access
The Voronoi game on graphs and its complexity
Author(s) -
Sachio Teramoto,
Erik D. Demaine,
Ryuhei Uehara
Publication year - 2011
Publication title -
journal of graph algorithms and applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.387
H-Index - 38
ISSN - 1526-1719
DOI - 10.7155/jgaa.00235
Subject(s) - voronoi diagram , computer science , mathematics , geometry
The Voronoi game is a two-person game which is a model for a competitive facility location. The game is played on a continuous domain, and only two special cases (one-dimensional case and one-round case) are well investigated. We introduce the discrete Voronoi game in which the game arena is given as a graph. We first analyze the game when the arena is a large complete k-ary tree, and give an optimal strategy. When both players play optimally, the first player wins when k is odd, and the game ends in a tie for even k. Next we show that the discrete Voronoi game is intractable in general. Even for the one-round case in which the strategy adopted by the first player consist of a fixed single node, deciding whether the second player can win is NP-complete. We also show that deciding whether the second player can win is PSPACE-complete in general

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom