
Application of Localization to the Multivariate Moment Problem
Author(s) -
Murray Marshall
Publication year - 2014
Publication title -
mathematica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.553
H-Index - 30
eISSN - 1903-1807
pISSN - 0025-5521
DOI - 10.7146/math.scand.a-19225
Subject(s) - mathematics , uniqueness , hilbert space , mathematical proof , measure (data warehouse) , moment (physics) , multivariate statistics , moment problem , positive definite matrix , space (punctuation) , combinatorics , pure mathematics , extension (predicate logic) , discrete mathematics , mathematical analysis , quantum mechanics , statistics , geometry , physics , eigenvalues and eigenvectors , linguistics , philosophy , database , computer science , principle of maximum entropy , programming language
It is explained how the localization technique introduced by the author in [19] leads to a useful reformulation of the multivariate moment problem in terms of extension of positive semidefinite linear functionals to positive semidefinite linear functionals on the localization of $\mathsf{R}[\underline{x}]$ at $p = \prod_{i=1}^n(1+x_i^2)$ or $p' = \prod_{i=1}^{n-1}(1+x_i^2)$. It is explained how this reformulation can be exploited to prove new results concerning existence and uniqueness of the measure $\mu$ and density of $\mathsf{C}[\underline{x}]$ in $\mathscr{L}^s(\mu)$ and, at the same time, to give new proofs of old results of Fuglede [11], Nussbaum [21], Petersen [22] and Schmüdgen [27], results which were proved previously using the theory of strongly commuting self-adjoint operators on Hilbert space.