z-logo
open-access-imgOpen Access
Approximation by invertible elements and the generalized $E$-stable rank for $A({\boldsymbol D})_{\mathsf R}$ and $C({\boldsymbol D})_{\mathrm{sym}}$
Author(s) -
Raymond Mortini,
Rudolf Rupp
Publication year - 2011
Publication title -
mathematica scandinavica
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.553
H-Index - 30
eISSN - 1903-1807
pISSN - 0025-5521
DOI - 10.7146/math.scand.a-15180
Subject(s) - invertible matrix , mathematics , holomorphic function , subalgebra , combinatorics , rank (graph theory) , unit (ring theory) , algebra over a field , pure mathematics , mathematics education
We determine the generalized $E$-stable ranks for the real algebra, $C(\boldsymbol{D})_{\mathrm{sym}}$, of all complex valued continuous functions on the closed unit disk, symmetric to the real axis, and its subalgebra $A(\boldsymbol{D})_{\mathsf R}$ of holomorphic functions. A characterization of those invertible functions in $C(E)$ is given that can be uniformly approximated on $E$ by invertibles in $A(\boldsymbol {D})_{\mathsf R}$. Finally, we compute the Bass and topological stable rank of $C(K)_{\mathrm{sym}}$ for real symmetric compact planar sets $K$.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom